Интегральное стереокино - Definition. Was ist Интегральное стереокино
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Интегральное стереокино - definition

ПРЕОБРАЗОВАНИЕ СИГНАЛА, ЧИСЛОВОГО РЯДА ИЛИ ИЗОБРАЖЕНИЯ
Интегральное преобразование

Интегральное стереокино      

стереоскопическое кино, в котором объёмно-пространственный образ создаётся в результате одновременной проекции на растровый экран не двух, как в однопарном стереоскопическом кино, а многих плоских взаимосвязанных между собой изображений (кадров), хотя зритель видит из них в каждое мгновение только 2 изображения: одно - левым, а другое - правым глазом. Метод И. с. впервые в мире был предложен в 1962-63 советским изобретателем безочкового стереоскопического кино С. П. Ивановым и совершенствовался им в последующие годы. В 1965 был продемонстрирован экспериментальный кинофильм (режиссер Н. В. Экк), снятый интегральным методом, а в 1972 в Москве (кинотеатр "Октябрь") впервые демонстрировался короткометражный видовой кинофильм "По Южному берегу Крыма", снятый также интегральным методом (режиссёр и оператор Н. И. Большаков).

При наиболее простом способе съёмки И. с. на 8-, 16- или 35-мм киноплёнку применяется обычный (однообъективный) съёмочный аппарат с любыми объективами. В нём изменяется только рамка, ограничивающая поле зрения визира в соответствии с выбранным стереоскопическим экраном. Особенность процесса съёмки заключается в том, что съемочный аппарат устанавливается не обычно, а поворачивается вокруг оптической оси объектива на 90° для обеспечения горизонтального продвижения киноплёнки, необходимого при проекции, и перемещается в горизонтальной плоскости вокруг центрального объекта композиции (рис. 1). Скорость перемещения камеры может быть рассчитана по формуле: v = LK/10․f'c, где v - скорость движения камеры (мм/сек), L - расстояние до центрального объекта композиции (мм), К - частота смены кадров (кадр/сек), f'c - сопряжённое фокусное расстояние (мм). По этой формуле могут быть составлены таблицы для наиболее характерных или часто встречающихся случаев съёмки. При съёмке допустимы 2-3-кратные отклонения от параметров, указанных в формуле. Простейший контроль правильности такой съёмки заключается в том, что видимые в визире перемещения самых ближних и самых удалённых объектов (относительно неподвижного центрального объекта) от одной границы кадра к другой должны происходить за время не более 10 сек и не менее 2 сек.

При проекции на растровый экран киноплёнка продвигается горизонтально с обычной частотой смены кадров (24 кадр/сек) мимо нескольких взаимосвязанных объективов. Количество объективов определяется оптическими параметрами растрового экрана. Так, при проекции на растровый экран с перспективным линзовым растром (рис. 2) достаточно от 5 до 10 объективов. В этом случае на любое кресло зрительного зала придется от 5 до 10 элементарных взаимосвязанных фокальных зон, составляющих в целом интегральную зону стереоскопического видения (о фокальных зонах см. в ст. Стереоскопическое кино). Посредством экрана образуется до 50 интегральных зон или 400-500 элементарных фокальных зон. Такое количество зон обеспечивает нормальные условия просмотра кинофильма зрителем: при отклонении зрителя вправо или влево стереоскопический эффект не пропадает, что неизбежно при однопарной безочковой стереоскопической проекции, а напротив, подчёркивается за счёт естественного перемещения ближних предметов относительно дальних, т. е. в полном соответствии с тем, что наблюдается в жизни.

Однако рассмотренному способу получения И. с. свойствен недостаток: наиболее быстро движущиеся объекты оказываются заснятыми с большим временным параллаксом, проявляющимся при любой проекции в виде дробления изображения движущихся объектов; кроме того, при стереоскопической проекции наблюдается заметная деформация формы объектов и их пространственного положения. Во избежание этого явления предложено 2 более сложных способа получения И. с.: 1) увеличение при съёмке и проецировании частоты смены кадров в 2-4 раза; 2) съёмка и проецирование одновременно серии из 8-9 кадров при прежней частоте смены кадров. Для реализации последнего способа может быть использован киносъёмочный аппарат, в котором применена, например, перфорированная аэрофотоплёнка шириной 190 мм с поперечным (к вертикальному перемещению плёнки) размещением на ней серии из 9 отдельных взаимосвязанных кадров размером 19×19 мм каждый.

Лит.: Иванов Б. Т., Растровая стереоскопия в кино, М., 1945; Валюс Н. А., Растровая оптика, М., 1949; Иванов С.П., Иванов М. С., Быховский В. М. , Интегральная стереодиапроекция на ЭКСПО-70, "Техника кино и телевидения", 1970, № 10, с. 33-38.

С. П. Иванов.

Рис. 1. Схема съёмки кинофильма интегральным методом: А - сверху вниз (в вертикальной плоскости); Б - в сторону (в горизонтальной плоскости); 1, 2, 3, 4 - центральные объекты композиции. Стрелками показаны пути перемещения съёмочного аппарата при съёмке в сторону (I) и сверху вниз (II); обоюдоострыми стрелками показан быстрый переход с одной визирной точки (центрального объекта) на другую.

Рис. 2. Схема образования интегральных фокальных зон растровым экраном с перспективным растром.

Фредгольма уравнение         
Интегральное уравнение Фредгольма второго рода; Интегральное уравнение Фредгольма первого рода; Уравнение Фредгольма; Фредгольма уравнение

интегральные уравнения вида:

, (1)

ax, sb, (Ф. у. 1-го рода) и

, (2)

ax, sb,

(Ф. у. 2-го рода), где К (х, s) - заданная непрерывная функция от x и s, называемая ядром уравнения, f (x) - заданная функция, φ(х) - искомая функция, λ - параметр (см. Интегральные уравнения). Уравнения (1) и (2) были изучены в 1900-1903 Э. Фредгольмом. Теория Ф. у. 2-го рода проще и они чаще используются в приложениях. Построение устойчивых решений Ф. у. 1-го рода в общем случае возможно лишь с помощью специальных регуляризирующих алгоритмов решения некорректно поставленных задач. Если λ не является собственным значением (См. Собственные значения) уравнения (2), то это уравнение имеет единственное непрерывное решение, определяемое формулой:

, (3)

где R (x, s; λ) = D (x, s, λ)/D (λ) называется резольвентой (См. Резольвента) уравнения (2). Здесь

,

d0(x, s) = K (x, s),

,

,

, .

Лит.: см. при ст. Интегральные уравнения.

Интегральное уравнение Фредгольма         
Интегральное уравнение Фредгольма второго рода; Интегральное уравнение Фредгольма первого рода; Уравнение Фредгольма; Фредгольма уравнение
Интегральное уравнение Фре́дгольма — интегральное уравнение, ядром которого является ядро Фредгольма. Названо по имени шведского математика Ивара Фредгольма. Со временем исследование уравнения Фредгольма выросло в самостоятельный раздел функционального анализа — теорию Фредгольма, которая изучает ядра Фредгольма и операторы Фредгольма.

Wikipedia

Интегральные преобразования

Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований. Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач теории упругости, теплопроводности, электродинамики и других разделов математической физики. Использование интегральных преобразований позволяет свести дифференциальное, интегральное или интегро-дифференциальное уравнение к алгебраическому, а также, в случае дифференциального уравнения в частных производных, уменьшить размерность.

Интегральные преобразования задаются формулой

T f ( u ) = S K ( t , u ) f ( t ) d t {\displaystyle Tf(u)=\int \limits _{S}K(t,u)\,f(t)\,dt} ,

где функции f , T f {\displaystyle f,Tf} называются оригиналом и изображением соответственно, и являются элементами некоторого функционального пространства L {\displaystyle L} , при этом функция K {\displaystyle K} называется ядром интегрального преобразования.

Большинство интегральных преобразований являются обратимыми, то есть по известному изображению можно восстановить оригинал, зачастую также интегральным преобразованием:

f ( t ) = S K 1 ( u , t ) ( T f ( u ) ) d u . {\displaystyle f(t)=\int \limits _{S'}K^{-1}(u,t)\,(Tf(u))\,du.}

Хотя свойства интегральных преобразований достаточно обширны, у них довольно много общего. Например, каждое интегральное преобразование является линейным оператором.